Course/Subject: Core Connections 2

Grade Level: 7

Textbook(s) / Instructional Materials Used: Core Connections 2 with Toolkit and eBook

Month(s): August - September			Unit 1			
The Number System						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
How to solve real world and mathematical problems involving the four operations with rational numbers.	M07.A-N.1.1.1 Apply properties of operations to add and subtract rational numbers, including realworld contexts. M07.A-N.1.1.2 Represent addition and subtraction on a horizontal or vertical number line. M07.A-N.1.1.3 Apply properties of operations to multiply and divide rational numbers, including realworld contexts; demonstrate that	Mathematical Operations Rational Numbers Mathematical Properties Order of Operations Using Number Line to model operations Rounding	How can you tell when decimals repeat? How can I rewrite decimals as fractions and vice versa? How can I represent addition, subtraction and multiplication on a number line? What is a shorter way to represent repeated addition? How can I add and multiply integers, fractions, decimals, and mixed numbers? How can I represent addition and multiplication of integers, fractions, decimals, and mixed numbers on a number line? What mathematical property is being used?	Students will know.... strategies for rewriting terminating and repeating decimals as fractions. how to compose and decompose numbers in multiple ways. addition and subtraction of Integers as well as multiplication as repeated addition. how to use the standard algorithm for multiplying	Number line Integers Inverse Operations Additive Inverse Property Associative property of addition and multiplication Commutative Property of addition and multiplication Addition property of equality Additive identity	Operations with Fractions, Decimals, Integers, and Mixed Numbers Solving Problems using order of Operations Using Number Line to model Addition and Subtraction of rational numbers Rounding decimals to the nearest tenth, hundredth, thousandths Express a Rational Number in decimal form. Identifying

the decimal form of a rational number terminates or eventually repeats.	fractions and use generic rectangles to multiply mixed numbers. the concept of opposites or zero pairs in context determine whether a fraction can be rewritten as a repeating or terminating decimal. build (compose) and take apart (decompose) numbers and lengths. add and multiply positive and negative integers and rational numbers. identify numerous mathematical properties	property Complex Fraction Terminating and Repeating decimals Division Property of Equality Multiplication Property of Equality Multiplicative Identity Property Rational Numbers Zero Property of Multiplication Subtraction Property of Equality	mathematical properties
Month(s): September - November	Unit 2		

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
How do you determine if a sample is Random? How do you use statistical measures to compare two numerical data distributions? How can you predict the likelihood of an outcome?	M07.D-S.1.1.1 Determine whether a sample is a random sample given a real- world situation. M07.D-S.1.1.2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. M07.D-S.2.1.1 Compare two numerical data distributions using measures of center and variability. M07.D-S.3.1.1 Predict or determine whether some outcomes are certain, more likely, less likely, equally likely, or impossible (i.e., a probability near 0 indicates an unlikely event, a	Simple Probability Compound Probability Statistical Analysis Samples Outcomes Experimental and Theoretical Probability Survey	What is the probability of an event happening or not happening? How can I use probability to make predictions? What happens when the sample space is modified? How can I calculate the probability if there are multiple outcomes? How can the probabilities of multiple events be combined? What is the difference between experimental and theoretical probability? How can I apply my knowledge of fractions to represent and calculate the probabilities of a variety of events? How can I calculate the probability of dependent and independent events by creating an organized list? How can I create a probability table to represent two events with multiple possibilities? How can I create a probability tree to represent multiple events with multiple	Students will know... how to find out how likely it is that a specific event will occur. calculate the probabilities of two separate events to decide which is more likely to happen. how to find both experimental and theoretical probabilities of events. probability is a fraction of the outcomes in a sample space and that the probability of an event is always between 0 and 1 the difference between experimental and theoretical probability	Biased Sample Complement Compound Event Dependent Event Experimental Probability First Quartile Independent Event Inference Interquartile Range Mean Mean Absolute Deviation Measure of Center Measure of Variability Median Population	Creating a Random Sample Estimating a solution Predicting an outcome Comparing data from 2 different distributions. Determine probability of Dependent Events Determine Probability of Independent Events Creating Probability Trees, Organized Lists, and Tables. Creating and Interpreting Box Plots. Determining a population.

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { using organized } \\ \text { lists, tables, tree } \\ \text { diagrams, and } \\ \text { simulation. }\end{array} & & & \begin{array}{l}\text { and outliers. } \\ \text { how to compare } \\ \text { two populations } \\ \text { based on } \\ \text { making } \\ \text { inferences from } \\ \text { samples } \\ \text { quantifying the } \\ \text { difference } \\ \text { betwen the } \\ \text { medians as a } \\ \text { multiple of the } \\ \text { IQR. } \\ \text { how to analyze }\end{array} & \\ \text { methods of } \\ \text { sampling and } \\ \text { critique how } \\ \text { well a sample } \\ \text { represents a } \\ \text { certain } \\ \text { population. }\end{array}\right]$

	context of the problem.			the Distributive Property. how to solve equations that have infinite solutions and those with no solutions. write and solve algebraic inequalities. solve for a variable when two expressions are equal. write and solve an equation to solve a word problem. recognize when an equation has no solution or infinite solutions.	Solution Set Term Variable	
Month(s): January - March			Unit 4			
Proportions and Percents						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
How do you analyze proportional relationships?	M07.A-R.1.1.1 Compute unit rates associated with ratios of fractions,	Proportions Similar Figures	How can I determine if the shapes are similar? How can I use a scale drawing to find missing dimensions?	Students will know... how to identify corresponding	Constant of Proportionality (k) Cross Multiply	Determining if relationships are proportional. Use the constant

How do you recognize proportional relationships? How do you represent proportional relationships? How do you use proportional relationships to solve real-world problems?	including ratios of lengths, areas, and other quantities measured in like or different units. M07.A-R.1.1.2 Determine whether two quantities are proportionally related (e.g., by testing for equivalent ratios in a table, graphing on a coordinate plane and observing whether the graph is a straight line through the origin). M07.A-R.1.1.3 Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. M07.A-R.1.1.4 Represent proportional	Constant of Proportionality Unit Rate Scale Drawings Percents Percent increase and decrease	How does a proportional relationship grow? What does the graph and table of a proportional relationship look like? How can I calculate the constant of proportionality/unit rate and how it is related to the graph and rule? What are the connections between the table, graph, rule, and constant of proportionality of a proportional relationship? How can I use scale drawings to find missing side lengths and areas of shapes? How can I calculate the percent increase or decrease? How can I find the equation of the proportional relationship? How can I find the missing value in a proportional relationship? How can I scale quantities to analyze and describe their relationship?	sides of similar figures and compare their ratios. how to solve problems involving scale drawings of geometric figures. how to create scale drawings and compute actual lengths and areas from scale drawings. the difference between proportional relationships and other linear relationships. how to create tables, graph proportional relationships, and identify proportional relationships in them. how to calculate unit rates and use them to solve word problems involving	Percent Percent Change Percent Decrease Percent Error Percent Increase Rate Ratio Scale Scale Drawing Scale Factor Unit Rate	of proportionality to find the missing side of similar figures. Determine the unit rate from a graph or table. Determine the constant of proportionality from a graph, table, or rule. Generate a scale model using constant of proportionality. Find the percent of change in a real world situation.

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
What are the properties of geometric figures? What are the relationships between different angles in a figure? How do I find the circumference and area of a circle? How do you find the surface area and volume of a 3 dimensional figure?	M07.C-G.1.1.2 Identify or describe the properties of all types of triangles based on angle and side measures. M07.C-G.1.1.3 Use and apply the triangle inequality theorem. M07.C-G.1.1.4 Describe the two-dimensional figures that result from slicing 3 dimensional figures. M07.C-G.2.1.1 Identify and use properties of supplementary, complementary, and adjacent angles in a multistep problem to write and solve simple equations for an unknown angle in a figure. M07.C-G.2.1.2 Identify and use	Circles Composite Shapes Angles Parallel Lines and Transversals Cross Sections Volume Surface Area Properties of Triangles	How can I find the area of a composite figure? What is a cross section? How can I classify and identify angle relationships? What is the relationship between the angles formed by parallel lines cut by a transversal? Will these three angles or side lengths make a triangle? How can I describe the properties of all types of triangles and apply the triangle inequality theorem? How can I find the missing angle of a triangle? How can I calculate the circumference and area of a circle? How can I find the area of a complex shape? How can I calculate the surface area and volume of a 3-D shape? What shape is formed when I slice a 3-D shape?	Students will know... how to classify angles and angle pairs and also use angle pair properties to write and solve simple equations. how to construct triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. identify angles by their characteristics and use correct vocabulary to describe and name them. construct triangles with given side lengths and/or	Adjacent Angles Alternate Exterior Angles Alternate Interior Angles Area Center Circumference Complementar y Angles Composite Figure Corresponding Angles Cross Section Diameter Interior Angle Lateral Surface Area Net Parallel Lines Pi	Determine area and circumference of a circle. Determine area and perimeter of composite shapes. Use angle relationships created by parallel lines and transversals. Determine the cross section of a 3 dimensional figure. Find the volume and surface area of a 3 dimensional figure. Use the triangle angle sum theorem. Use the triangle inequality theorem.

	and right prism Formulas will b provided.			relationship between surface area and volume. how to describe the twodimensional shapes that result from slicing threedimensional figures. how to find the volume of a prism by decomposing it into equal 1-unit-high layers. how to calculate the volume of non-rectangular prisms.		

